Robust Model Predictive Control with Anytime Estimation
نویسندگان
چکیده
With an increasing autonomy in modern control systems comes an increasing amount of sensor data to be processed, leading to overloaded computation and communication in the systems. For example, a vision-based robot controller processes large image data from cameras at high frequency to observe the robot’s state in the surrounding environment, which is used to compute control commands. In real-time control systems where large volume of data is processed for feedback control, the data-dependent state estimation can become a computation and communication bottleneck, resulting in potentially degraded control performance. Anytime algorithms, which offer a trade-off between execution time and accuracy of computation, can be leveraged in such systems. We present a Robust Model Predictive Control approach with an Anytime State Estimation Algorithm, which computes both the optimal control signal for the plant and the (time-varying) deadline/accuracy constraint for the anytime estimator. Our approach improves the system’s performance (concerning both the control performance and the estimation cost) over conventional controllers, which are designed for and operate at a fixed computation time/accuracy setting. We numerically evaluate our approach in an idealized motion model for navigation with both state and control constraints.
منابع مشابه
Improving the stability of the power system based on static synchronous series compensation equipped with robust model predictive control
Low-frequency oscillations (LFO) imperil the stability of the power system and reduce the Capacity of transmission lines. In the power systems, FACTS devices and Power System stabilizers are used to improve the stability. Static synchronous series compensators is one of the most important FACTS devices. This paper investigates the damping of LFO with static synchronous series compensator (SSSC)...
متن کاملDevelopment of RMPC Algorithm for Compensation of Uncertain Time-Delay and Disturbance in NCS
In this paper, a synthesis method based on robust model predictive control is developed for compensation of uncertain time-delays in networked control systems with bounded disturbance. The proposed method uses linear matrix inequalities and uncertainty polytope to model uncertain time-delays and system disturbances. The continuous system with time-delay is discretized using uncertainty po...
متن کاملA Linear Matrix Inequality (LMI) Approach to Robust Model Predictive Control (RMPC) Design in Nonlinear Uncertain Systems Subjected to Control Input Constraint
In this paper, a robust model predictive control (MPC) algorithm is addressed for nonlinear uncertain systems in presence of the control input constraint. For achieving this goal, firstly, the additive and polytopic uncertainties are formulated in the nonlinear uncertain systems. Then, the control policy can be demonstrated as a state feedback control law in order to minimize a given cost funct...
متن کاملRobust Identification of Smart Foam Using Set Mem-bership Estimation in A Model Error Modeling Frame-work
The aim of this paper is robust identification of smart foam, as an electroacoustic transducer, considering unmodeled dynamics due to nonlinearities in behaviour at low frequencies and measurement noise at high frequencies as existent uncertainties. Set membership estimation combined with model error modelling technique is used where the approach is based on worst case scenario with unknown but...
متن کاملRobust Trajectory Free Model Predictive Control of Biped Robots with Adaptive Gait Length
This paper employs nonlinear disturbance observer (NDO) for robust trajectory-free Nonlinear Model Predictive Control (NMPC) of biped robots. The NDO is used to reject the additive disturbances caused by parameter uncertainties, unmodeled dynamics, joints friction, and external slow-varying forces acting on the biped robots. In contrary to the slow-varying disturbances, handling sudden pushing ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2014